Day 1 - Intro to R Sneak Peek!

Eric Hare, Andee Kaplan, Carson Sievert

Iowa State University

Motivating Example

- Kick off the workshop by exploring a real data set using R!
- Goal: get the flavor of using R for data management and exploration
- Don't worry about understanding all the coding right away

We will go back and explain how it all works in detail

Tips Data Set

- Tips data set recorded by a server in a restaurant over a span of about 10 weeks
- Server recorded several variables about groups they served:
 - Amount they were tipped
 - Cost of the total bill
 - Several characteristics about the groups being served
- Primary Question: How do these variable influence the amount being tipped?

ション ふゆ アメリア メリア しょうくの

Follow along using RWorkshop1Tips.R

First look at data in R

Lets use R to look at the top few rows of the tips data set

head() will pull the first few rows
head(tips)

##		total_bill	tip	sex	smoker	day	time	size
##	1	16.99	1.01	Female	No	Sun	Dinner	2
##	2	10.34	1.66	Male	No	Sun	Dinner	3
##	3	21.01	3.50	Male	No	Sun	Dinner	3
##	4	23.68	3.31	Male	No	Sun	Dinner	2
##	5	24.59	3.61	Female	No	Sun	Dinner	4
##	6	25.29	4.71	Male	No	Sun	Dinner	4

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Tips data attributes

How big is this data set and what types of variables are in each column?

#look at the structure of the tips data set
str(tips)

## 'data.frame': 244 obs. of 7 variables:								
##	<pre>\$ total_bill</pre>	l:	num 17 10.3 21 23.7 24.6					
##	\$ tip	:	num 1.01 1.66 3.5 3.31 3.61 4.71 2 3.12 1.96 3.23					
##	\$ sex	:	Factor w/ 2 levels "Female", "Male": 1 2 2 2 1 2 2 2 2					
##	\$ smoker	:	Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 1 1 1					
##	\$ day	:	Factor w/ 4 levels "Fri", "Sat", "Sun",: 3 3 3 3 3 3					
##	<pre>\$ time</pre>	:	Factor w/ 2 levels "Dinner", "Lunch": 1 1 1 1 1 1 1 1					
##	\$ size	:	int 2332442422					

Tips Variables

Let's get a summary of the values for each variable in tips

summary(tips)

##	total_bill	tip	sex	smoker	day
##	Min. : 3.07	Min. : 1.000	Female: 87	No :151	Fri :19
##	1st Qu.:13.35	1st Qu.: 2.000	Male :157	Yes: 93	Sat :87
##	Median :17.80	Median : 2.900			Sun :76
##	Mean :19.79	Mean : 2.998			Thur:62
##	3rd Qu.:24.13	3rd Qu.: 3.562			
##	Max. :50.81	Max. :10.000			
##	time	size			
##	Dinner:176 Mi	n. :1.00			
##	Lunch : 68 1s	t Qu.:2.00			
##	Me	dian :2.00			
##	Me	an :2.57			
##	3r	d Qu.:3.00			
##	Ma	x. :6.00			

Scatterplots

Lets look at the relationship between total bill and tip value

qplot(tip, total_bill, geom="point", data=tips)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(

Scatterplots

Color the points by lunch and dinner groups

qplot(tip, total_bill, geom="point", data=tips, colour=time)

Scatterplots

Add linear regression line to the plot

qplot(tip, total_bill, geom="point", data=tips) + geom_smooth(method="l

Rate of Tipping

Tipping generally done using a rule of thumb based on a percentage of the total bill. We will make a new variable in the data set for the tipping rate = tip / total bill

tips\$rate <- tips\$tip / tips\$total_bill
What are the properties of this new variable for tipping rate?
summary(tips\$rate)</pre>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.03564 0.12910 0.15480 0.16080 0.19150 0.71030

Tipping Rate Histogram

Lets look distribution of tipping rate values with a histogram

qplot(rate, data=tips, binwidth=.05)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Rate of Tipping

One person tipped over 70%, who are they?

tips[which.max(tips\$rate),]

##		total_bill	tip	sex	smoker	day	time	size	rate
##	173	7.25	5.15	Male	Yes	Sun	Dinner	2	0.7103448

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Look at the average tipping rate for men and women seperately

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

mean(tips\$rate[tips\$sex=="Male"])

[1] 0.1576505

mean(tips\$rate[tips\$sex=="Female"])

[1] 0.1664907

t-test

There is a difference but is it statistically significant?

```
t.test(rate ~ sex , data=tips)
##
##
   Welch Two Sample t-test
##
## data: rate by sex
## t = 1.1433, df = 206.76, p-value = 0.2542
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.006404119 0.024084498
## sample estimates:
## mean in group Female mean in group Male
             0.1664907
                                   0.1576505
##
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Boxplots

Perhaps we are interested if smokers tip at a different rate than non-smokers. We could compare the rate values of each group with a side by side boxplot!

```
qplot(smoker, rate, geom="boxplot",data=tips)
```


Your Turn

Try playing with chunks of code from RWorkshop1Tips.R to further investigate the tips data

- Get a summary of the total bill values
- Make side by side boxplots of tip rates for different days of the week

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Find the average tip value for smokers