
More dplyr

Eric Hare, Andee Kaplan, Carson Sievert

June 10, 2015

Using the packages tidyr, dplyr
During a ten week sensory experiment, 12 individuals were asked to
assess taste of french fries on several scales (how potato-y, buttery,
grassy, rancid, paint-y do the fries taste?)

French fries were fried in one of three different oils, and each week
individuals had to assess six batches of french fries (all three oils,
replicated twice)

time treatment subject rep potato buttery grassy rancid painty
61 1 1 3 1.00 2.90 0.00 0.00 0.00 5.50
25 1 1 3 2.00 14.00 0.00 0.00 1.10 0.00
62 1 1 10 1.00 11.00 6.40 0.00 0.00 0.00
26 1 1 10 2.00 9.90 5.90 2.90 2.20 0.00
63 1 1 15 1.00 1.20 0.10 0.00 1.10 5.10
27 1 1 15 2.00 8.80 3.00 3.60 1.50 2.30

This format is not ideal for data analysis
What code would be needed to plot each of the ratings over time as
a different color?

0

5

10

15

1_potato 2_buttery 3_grassy 4_rancid 5_painty
variable

ra
tin

g

What we have and what we want
We want to change this wide format:

to this long format:

Gathering

I When gathering, you need to specify the keys (identifiers) and
the values (measures).

Keys/Identifiers:

I Identify a record (must be unique)
I Example: Indices on an random variable
I Fixed by design of experiment (known in advance)
I May be single or composite (may have one or more variables)

Values/Measures:

I Collected during the experiment (not known in advance)
I Usually numeric quantities

Gathering the French Fry Data

french_fries_long <- gather(french_fries, key = variable, value = rating, potato:painty)

head(french_fries_long)

time treatment subject rep variable rating
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
6 1 1 15 2 potato 8.8

Let’s Reconstruct our Plot

french_fries_long_sub <- french_fries_long[
french_fries_long$time == 10,]

qplot(variable, rating, data = french_fries_long_sub, fill = variable, geom = "boxplot")

0

5

10

15

potato buttery grassy rancid painty
variable

ra
tin

g

variable

potato

buttery

grassy

rancid

painty

Long to Wide

In certain applications, we may wish to take a long dataset and
convert it to a wide dataset (Perhaps displaying in a table).

head(french_fries_long)

time treatment subject rep variable rating
1 1 1 3 1 potato 2.9
2 1 1 3 2 potato 14.0
3 1 1 10 1 potato 11.0
4 1 1 10 2 potato 9.9
5 1 1 15 1 potato 1.2
6 1 1 15 2 potato 8.8

Spread

We use the spread function from tidyr to do this:

french_fries_wide <- spread(french_fries_long, key = variable, value = rating)

head(french_fries_wide)

time treatment subject rep potato buttery grassy rancid painty
1 1 1 3 1 2.9 0.0 0.0 0.0 5.5
2 1 1 3 2 14.0 0.0 0.0 1.1 0.0
3 1 1 10 1 11.0 6.4 0.0 0.0 0.0
4 1 1 10 2 9.9 5.9 2.9 2.2 0.0
5 1 1 15 1 1.2 0.1 0.0 1.1 5.1
6 1 1 15 2 8.8 3.0 3.6 1.5 2.3

YOUR TURN

1. Read in the billboard top 100 music data, which contains
N’Sync and Backstreet Boys songs that entered the billboard
charts in the year 2000

billboard <- read.csv("http://heike.github.io/rwrks/03a-r-format/data/billboard.csv")

2. Use tidyr to convert this data into a long format appropriate
for plotting a time series (date on the x axis, chart position on
the y axis)

3. Use ggplot2 to create this time series plot:

0

25

50

75

100

0 20 40 60
week

ra
nk

artist

Backstreet Boys, The

N'Sync

The Split-Apply-Combine Approach

I Split a dataset into many smaller sub-datasets
I Apply some function to each sub-dataset to compute a result
I Combine the results of the function calls into a one dataset

Split-Apply-Combine in dplyr

library(dplyr)

french_fries_split <- group_by(french_fries_long, variable) # SPLIT
french_fries_apply <- summarise(french_fries_split, rating = mean(rating, na.rm = TRUE)) # APPLY + COMBINE
french_fries_apply

Source: local data frame [5 x 2]
##
variable rating
1 potato 6.9525180
2 buttery 1.8236994
3 grassy 0.6641727
4 rancid 3.8522302
5 painty 2.5217579

The pipe operator
I dplyr allows us to chain together these data analysis tasks

using the %>% (pipe) operator
I x %>% f(y) is shorthand for f(x, y)
I Example:

french_fries %>%
gather(key = variable, value = rating, potato:painty) %>%
group_by(variable) %>%
summarise(rating = mean(rating, na.rm = TRUE))

Source: local data frame [5 x 2]
##
variable rating
1 potato 6.9525180
2 buttery 1.8236994
3 grassy 0.6641727
4 rancid 3.8522302
5 painty 2.5217579

dplyr verbs

There are five primary dplyr verbs, representing distinct data
analysis tasks:

I Filter: Remove the rows of a data frame, producing subsets
I Arrange: Reorder the rows of a data frame
I Select: Select particular columns of a data frame
I Mutate: Add new columns that are functions of existing

columns
I Summarise: Create collapsed summaries of a data frame

Filter

french_fries %>%
filter(subject == 3, time == 1)

time treatment subject rep potato buttery grassy rancid painty
1 1 1 3 1 2.9 0.0 0.0 0.0 5.5
2 1 1 3 2 14.0 0.0 0.0 1.1 0.0
3 1 2 3 1 13.9 0.0 0.0 3.9 0.0
4 1 2 3 2 13.4 0.1 0.0 1.5 0.0
5 1 3 3 1 14.1 0.0 0.0 1.1 0.0
6 1 3 3 2 9.5 0.0 0.6 2.8 0.0

Arrange

french_fries %>%
arrange(desc(rancid)) %>%
head

time treatment subject rep potato buttery grassy rancid painty
1 9 2 51 1 7.3 2.3 0 14.9 0.1
2 10 1 86 2 0.7 0.0 0 14.3 13.1
3 5 2 63 1 4.4 0.0 0 13.8 0.6
4 9 2 63 1 1.8 0.0 0 13.7 12.3
5 5 2 19 2 5.5 4.7 0 13.4 4.6
6 4 3 63 1 5.6 0.0 0 13.3 4.4

Select

french_fries %>%
select(time, treatment, subject, rep, potato) %>%
head

time treatment subject rep potato
61 1 1 3 1 2.9
25 1 1 3 2 14.0
62 1 1 10 1 11.0
26 1 1 10 2 9.9
63 1 1 15 1 1.2
27 1 1 15 2 8.8

Mutate

french_fries %>%
mutate(rancid2 = rancid^2) %>%
head

time treatment subject rep potato buttery grassy rancid painty rancid2
1 1 1 3 1 2.9 0.0 0.0 0.0 5.5 0.00
2 1 1 3 2 14.0 0.0 0.0 1.1 0.0 1.21
3 1 1 10 1 11.0 6.4 0.0 0.0 0.0 0.00
4 1 1 10 2 9.9 5.9 2.9 2.2 0.0 4.84
5 1 1 15 1 1.2 0.1 0.0 1.1 5.1 1.21
6 1 1 15 2 8.8 3.0 3.6 1.5 2.3 2.25

Summarise
french_fries %>%

group_by(time, treatment) %>%
summarise(mean_rancid = mean(rancid), sd_rancid = sd(rancid))

Source: local data frame [30 x 4]
Groups: time
##
time treatment mean_rancid sd_rancid
1 1 1 2.758333 3.212870
2 1 2 1.716667 2.714801
3 1 3 2.600000 3.202037
4 2 1 3.900000 4.374730
5 2 2 2.141667 3.117540
6 2 3 2.495833 3.378767
7 3 1 4.650000 3.933358
8 3 2 2.895833 3.773532
9 3 3 3.600000 3.592867
10 4 1 2.079167 2.394737
..

YOUR TURN

Read in the flights data:

flights <- read.csv("http://heike.github.io/rwrks/03a-r-format/data/flights.csv")

This dataset contains information on over 300,000 flights that
departed from New York City in the year 2013.

1. Using dplyr and the pipe operator, create a data frame
consisting of the average arrival delay (arr_delay) based on
the destination airport (dest). Sort this data frame in
descending order, so the destination airport with the largest
delay is first.

2. Find out the most used airports for each airline carrier.

Dates and Times

Dates are deceptively hard to work with in R.

Example: 02/05/2012. Is it February 5th, or May 2nd?

Other things are difficult too:

I Time zones
I POSIXct format in base R is challenging

The lubridate package helps tackle some of these issues.

Basic Lubridate Use

library(lubridate)

now()
today()
now() + hours(4)
today() - days(2)

[1] "2015-06-10 15:28:44 CDT"
[1] "2015-06-10"
[1] "2015-06-10 19:28:44 CDT"
[1] "2015-06-08"

Parsing Dates

ymd("2013-05-14")
mdy("05/14/2013")
dmy("14052013")
ymd_hms("2013:05:14 14:50:30", tz = "America/Chicago")

[1] "2013-05-14 UTC"
[1] "2013-05-14 UTC"
[1] "2013-05-14 UTC"
[1] "2013-05-14 14:50:30 CDT"

YOUR TURN

1. Using the flights data, create a new column Date using
lubridate. You will need to paste together the columns year,
month, and day in order to do this. See the paste function.

2. Use dplyr to calculate the average departure delay for each
date.

3. Plot a time series of the date versus the average departure delay

0

20

40

60

80

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014
date

de
p_

de
la

y

